SYNTHESIS OF CHIRAL ADENOSINE RECEPTOR RECOGNITION UNITS VIA A SHARPLESS ASYMMETRIC EPOXIDATION PROCEDURE

Nelsen L. Lentz and Norton P. Peet*

Merrell Dow Research Institute 2110 E. Galbraith Road Cincinnati, OH 45215

Summary: Opening of the epoxide of (E)-4-phenyl-2-buten-1-ol with trimethylaluminum gave two phenonium ion-mediated products, whose ratio was dependent on reaction conditions.

 (R) -N⁶-Phenylisopropyladenosine (R-PIA) is a potent, A_1 -selective adenosine receptor agonist.¹ In order to incorporate the chiral phenylisopropyl recognition unit into other potential receptor agents, chiral 2-benzylpropionaldehyde (1) and/or the corresponding acid and alcohol were required. Preparation of 1 , via the epoxide of (E) -4-phenyl-2-buten-1-ol (5) obtained by a Sharpless asymmetric epoxidation procedure,² appeared to proceed through a skeletal rearrangement which also provided chiral 2-phenylbutyraldehyde $(9).$

Treatment of butadiene monoxide (3) with phenylmercuric chloride (2) in the presence of a palladium catalyst gave (E) -4-phenyl-2-buten-1-ol $(4).$ ³ Oxidation of 4 with 3-chloroperoxybenzoic acid gave epoxide 5, which was opened with trimethylaluminum^{4,5} to afford diol 7. Oxidative cleavage of 7 with sodium periodate gave the desired aldehyde 1, as shown in Scheme I.

811

Coproduced with 7 during the reaction of 5 with trimethylaluminum was the rearranged diol 8. Both $\frac{7}{5}$ and $\frac{8}{5}$ could arise from phenonium ion⁶ $\frac{6}{5}$, a proposed intermediate. Oxidation of $\underline{8}$ with sodium periodate gave aldehyde $\underline{9}$. The ratio of diols 7 and 8 was dependent on reaction conditions, as shown in Table I. Thus, at -78°C, rearranged aldehyde <u>9</u> was almost exclusively produced, while at 83°C, the ratio of <u>1</u>:9 was 1.1:

Table I. Ratios of Aldehydes 1 and 9 as a Function of Methylation Reaction Conditions.

***Three equivalents of Me₃Al were added to a solution of 5** with the solvent and temperature specified. For reactions i -iii, 2 M Me₃Al in hexane was used; for reaction iv, 2 M Me₃Al in toluene was used. bYields are from mixtures of diols 7 and 8 which were purified but not separated by radial chromatography. =Ratios were determined by gas chromatography. In all cases, ratios of $\underline{?}:\underline{8}$ were greater than those of $\underline{1}:\underline{9},$ reflecting the instability of 1.

Allylic alcohol 4 was subjected to Sharpless epoxidation conditions, which allowed the preparation of the enantiomers of aldehydes 1 and 9 . Thus, when diethyl L-tartrate² was used, as shown in Scheme II, (2S-trans)-3-(phenylmethyl)oxiranemethanol (5) was produced in 95% ee, as determined from its Mosher's ester.⁷ Treatment of 5 with trimethylaluminum gave a mixture of chiral diols 7 and 8, which were oxidized with $NaIO₄$ to give $(S)-1$ and $(S)-9$. It is felt that $(S)-9$, which represents a net inversion of configuration at the 3-position of 5, can only arise from phenonium ion 6 via path b. Aldehyde 1, whose absolute configuration arises from double inversion at the 3-position of 5, derives mainly from 6. However, it is felt that a portion of 1 comes directly from 5 by simple epoxide opening, since enantiomeric excess of 1 was greater at 0° C, where rearrangement and presumably phenonium ion participation is favored, than at 83°C. Enantiomeric excesses of 1 and 9 were determined using Mosher's esters⁷ of the corresponding alcohols, which were prepared by LiAlH₄ reduction.

Authentic samples of (R)-2-benzylpropanol (14) and the S enantiomer (15) were made as shown in Scheme III. 2-Benzylpropanoic acid^s was resolved by repeated recrystalliza of the (+)-methylbenzylamine salt (10) to give, after treatment with sulfuric acid, free acid 12.⁹ Reduction vith LiAlH₄ afforded (R) - 14^{10} in >95X ee, as determined from its Hosher's ester.⁷ Similarly, (S)-15¹⁰ was prepared via quinine salt 11⁹ in 95% ee. Thus, the chemical resolution method vas preferred over the asymmetric epoxidation procedure **for the preparation of chiral 2-bensylpropanols.**

Scheme III

RRFRRRNCES AND NOTRS

- 1. Daly, J.W. Adv. Cyclic Nucleotide Protein Phosphorylation Res. 1984, 19, 29.
- 2. Katsuki, T.; Sharpless, K.B. <u>J</u>. <u>Am</u>. <u>Chem</u>. <u>Soc</u>. 1980, <u>102</u>, 5974.
- 3. Larock, R.C.; Ilkka, S.J. <u>Tetrahedron</u> Lett. 1986, <u>27</u>, 2211.
- 4. Roush, V.R.; Adam, M.A.; Peseckis, S.M. <u>Tetrahedron Lett</u>. 1983, <u>24</u>, 1377.
- 5. Oshima, K.; Suzuki, T.; Saimoto, **H.; Tomioka, H.; Nozaki, H.** <u>Tetrahedron</u> <u>Le</u> 1982, 23, 3597.
- **6. Cram, D.J. <u>J</u>. <u>Am</u>. <u>Chem</u>. <u>Soc</u>. 1949, <u>71</u>, 3863.**
- 7. Dale, J.A.; Dull, D.L.; Mosher, H.S. <u>J</u>. <u>Org</u>. <u>Chem</u>. 1969, <u>34</u>, 2543.
- **8. Toussaint, 0.; Capdevielle, P.; Raumy, R. Synthesis 1986, 1029.**
- 9. Melander, L.; Bergman, N. <u>Acta Chem</u>. <u>Scand</u>. 1971, <u>25</u>, 2264. These authors report α_0^2 ⁵ = 26.0° (CHCl₃) for <u>12</u> and α_0^2 ⁵ = +22° (CHCl₃) for <u>13</u>. Rotations for 12 and **12 in Scheme III vere obtained in CRCl,.**
- 10. Evans, D.A.; Ennis, M.D.; Mathre, D.J. **Evans, D.A.; Ennis, M.D.; Mathre, D.J.** <u>J</u>. <u>Am</u>. <u>Chem</u>. <u>Soc</u>. 1982, <u>104</u>, 1737. These **authors report [a]²⁵₅ = +11.0 (C₆H₆) for (R)-<u>14</u> and [α]²₅ = -11.08 (C₆H₆) for (S)-1** Rotations for (R)-14 and (S)-15 in Scheme III were obtained in C_6H_6 .

(Received in USA 14 September 1989)