SYNTHESIS OF CHIRAL ADENOSINE RECEPTOR RECOGNITION UNITS VIA A SHARPLESS ASYMMETRIC EPOXIDATION PROCEDURE

Nelsen L. Lentz and Norton P. Peet*

Merrell Dow Research Institute 2110 E. Galbraith Road Cincinnati, OH 45215

Summary: Opening of the epoxide of (E)-4-phenyl-2-buten-1-ol with trimethylaluminum gave two phenonium ion-mediated products, whose ratio was dependent on reaction conditions.

 $(R)-N^6$ -Phenylisopropyladenosine (R-PIA) is a potent, A_1 -selective adenosine receptor agonist.¹ In order to incorporate the chiral phenylisopropyl recognition unit into other potential receptor agents, chiral 2-benzylpropionaldehyde (1) and/or the corresponding acid and alcohol were required. Preparation of 1, via the epoxide of (E)-4-phenyl-2-buten-1-ol (5) obtained by a Sharpless asymmetric epoxidation procedure,² appeared to proceed through a skeletal rearrangement which also provided chiral 2-phenylbutyraldehyde (9).

Treatment of butadiene monoxide ($\underline{3}$) with phenylmercuric chloride ($\underline{2}$) in the presence of a palladium catalyst gave (E)-4-phenyl-2-buten-1-ol ($\underline{4}$).³ Oxidation of $\underline{4}$ with 3-chloroperoxybenzoic acid gave epoxide $\underline{5}$, which was opened with trimethylaluminum^{4,5} to afford diol $\underline{7}$. Oxidative cleavage of $\underline{7}$ with sodium periodate gave the desired aldehyde $\underline{1}$, as shown in Scheme I.

Coproduced with $\underline{7}$ during the reaction of $\underline{5}$ with trimethylaluminum was the rearranged diol $\underline{8}$. Both $\underline{7}$ and $\underline{8}$ could arise from phenonium ion $\underline{6}$, a proposed intermediate. Oxidation of $\underline{8}$ with sodium periodate gave aldehyde $\underline{9}$. The ratio of diols $\underline{7}$ and $\underline{8}$ was dependent on reaction conditions, as shown in Table I. Thus, at -78°C, rearranged aldehyde $\underline{9}$ was almost exclusively produced, while at 83°C, the ratio of 1:9 was 1.1:1.

Table I. Ratios of Aldehydes 1 and 9 as a Function of Methylation Reaction Condition
--

Reaction	Temp °C	Solvent*	% Yieldb $\frac{1}{1} + \frac{9}{2}$	Ratio ^c 1:9
i	-78	CH ₂ Cl ₂	86	1:18
ii	0	CH ₂ Cl ₂	96	1:2.4
iii	24	CH ₂ Cl ₂	83	1:1.8
iv	83	ClCH2CH2Cl	90	1.1:1

*Three equivalents of Me_3Al were added to a solution of $\frac{5}{2}$ with the solvent and temperature specified. For reactions i-iii, 2 M Me_3Al in hexane was used; for reaction iv, 2 M Me_3Al in toluene was used.

bYields are from mixtures of diols 7 and 8 which were purified but not separated by radial chromatography.

cases, ratios of $\underline{7:8}$ were greater than those of $\underline{1:9}$, reflecting the instability of 1.

Allylic alcohol $\frac{4}{2}$ was subjected to Sharpless epoxidation conditions, which allowed the preparation of the enantiomers of aldehydes $\frac{1}{2}$ and $\frac{9}{2}$. Thus, when diethyl L-tartrate² was used, as shown in Scheme II, (2S-trans)-3-(phenylmethyl) oxiranemethanol $(\frac{5}{2})$ was produced in 95% ee, as determined from its Mosher's ester.⁷ Treatment of $\frac{5}{2}$ with trimethylaluminum gave a mixture of chiral diols $\frac{7}{2}$ and $\frac{8}{2}$, which were oxidized with NaIO₄ to give $(S)-\frac{1}{2}$ and $(S)-\frac{9}{2}$. It is felt that $(S)-\frac{9}{2}$, which represents a net inversion of configuration at the 3-position of $\frac{5}{2}$, can only arise from phenonium ion $\frac{6}{2}$ via path b. Aldehyde $\frac{1}{2}$, whose absolute configuration arises from double inversion at the 3-position of $\frac{5}{2}$, derives mainly from $\frac{6}{2}$. However, it is felt that a portion of $\frac{1}{2}$ comes directly from $\frac{5}{2}$ by simple epoxide opening, since enantiomeric excess of $\frac{1}{2}$ was greater at 0°C, where rearrangement and presumably phenonium ion participation is favored, than at 83°C. Enantiomeric excesses of $\frac{1}{2}$ and $\frac{9}{2}$ were determined using Mosher's esters⁷ of the corresponding alcohols, which were prepared by LiAlH₄ reduction.

Authentic samples of (R)-2-benzylpropanol ($\underline{14}$) and the S enantiomer ($\underline{15}$) were made as shown in Scheme III. 2-Benzylpropanoic acid* was resolved by repeated recrystallization of the (+)-methylbenzylamine salt ($\underline{10}$) to give, after treatment with sulfuric acid, free acid $\underline{12}$. Reduction with LiAlH4 afforded (R)- $\underline{14}$ 10 in >95% ee, as determined from its Mosher's ester. Similarly, (S)- $\underline{15}$ 10 was prepared via quinine salt $\underline{11}$ 9 in 95% ee. Thus, the chemical resolution method was preferred over the asymmetric epoxidation procedure for the preparation of chiral 2-benzylpropanols.

Scheme II

Scheme III

REFERENCES AND NOTES

- 1. Daly, J.W. Adv. Cyclic Nucleotide Protein Phosphorylation Res. 1984, 19, 29.
- 2. Katsuki, T.; Sharpless, K.B. J. Am. Chem. Soc. 1980, 102, 5974.
- 3. Larock, R.C.; Ilkka, S.J. Tetrahedron Lett. 1986, 27, 2211.
- 4. Roush, W.R.; Adam, M.A.; Peseckis, S.M. Tetrahedron Lett. 1983, 24, 1377.
- 5. Oshima, K.; Suzuki, T.; Saimoto, H.; Tomioka, H.; Nozaki, H. Tetrahedron Lett. 1982, 23, 3597.
- 6. Cram, D.J. J. Am. Chem. Soc. 1949, 71, 3863.
- 7. Dale, J.A.; Dull, D.L.; Mosher, H.S. <u>J. Org. Chem.</u> 1969, <u>34</u>, 2543.
- 8. Toussaint, O.; Capdevielle, P.; Maumy, M. Synthesis 1986, 1029.
- 9. Helander, L.; Bergman, N. Acta Chem. Scand. 1971, 25, 2264. These authors report $[\alpha]_0^{25} = 26.0^{\circ}$ (CHCl₃) for 12 and $[\alpha]_0^{25} = +22^{\circ}$ (CHCl₃) for 13. Rotations for 12 and 13 in Scheme III were obtained in CHCl₃.
- 10. Evans, D.A.; Ennis, M.D.; Mathre, D.J. <u>J. Am. Chem. Soc.</u> 1982, <u>104</u>, 1737. These authors report $[\alpha]_0^{25} = +11.0$ (C_6H_6) for $(R)-\underline{14}$ and $[\alpha]_0^{25} = -11.08$ (C_6H_6) for $(S)-\underline{15}$. Rotations for $(R)-\underline{14}$ and $(S)-\underline{15}$ in Scheme III were obtained in C_6H_6 .